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Abstract 

In this paper, we present the problem of counting magic squares and we focus 
on the case of multiplicative magic squares of order 4. We give the exact  
number of normal multiplicative magic squares of order 4 with an original and 
complete proof, pointing out the role of the action of the symmetric group. 
Moreover, we provide a new representation for magic squares of order 4. Such 
representation allows the construction of magic squares in a very simple way, 
using essentially only five particular 44 ×  matrices. 

1. Introduction 

A magic square is defined as an nn ×  matrix of integers, where the 
sum of the numbers in each line (i.e., in each row, in each column, and in 
each diagonal) is the same. Magic squares have a very rich history (see, 
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e.g., the beautiful book of Descombes [6]) and they have many 
generalizations. There are a lot of contributes to their theory from several 
different fields (see, e.g., the classical book of Andrews [1]). 

A very difficult job is counting how many magic squares there are for 
a given order and a given line sum, but if we relax the requirements and 
we ask for the so-called semi-magic squares (i.e., magic squares without 
the condition on the diagonals), the counting is easier. For order 3, Bona 
[2] has found that the number of semi-magic squares is 
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where r is the line sum (let us observe that in [2] semi-magic squares are 
called magic squares). For a general theory of counting semi-magic 
squares, you can see ([3], Chapter 9). 

The classic magic squares, which are called normal, are nn ×  

matrices, whose entries consist of the numbers 1,,1,0 2 −n…  and in 

each line, the sum of the numbers is the same. Their number is known for 
the orders 3, 4, and 5. The case of order 4 is especially interesting. There 
are exactly 880 normal magic squares of order 4 (up to symmetries of the 
square, i.e., in total they are 70408880 =× ). They were enumerated for 
the first time in 1693 by Frenicle de Bessy. The Frenicle method was 
analytically expanded and completed by Bondi and Ollerenshaw [4]. Of 
course, one can think to different kinds of magic squares, only changing 
the operation. Then a multiplicative magic square is an nn ×  matrix of 
integers, where the product of the numbers in each line is the same. This 
is not a new idea, for example, multiplicative semi-magic squares of order 
3 are studied in [7]. There are several different methods to construct 
multiplicative magic squares. The most obvious method is to transform an 

additive magic square ( )ijaA =  into ( ),ijabM =  for any base b. More 

intriguing ways are explained in [6] (multiplicative magic squares are 
usually constructed by using orthogonal latin squares or geometric 
progressions). 
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In [9], the problem of finding the exact number of multiplicative 
magic squares of order 4 has been posed. In order to solve such question, 
in [8], a correspondence between additive and multiplicative magic 
squares is proposed. The authors claimed that such function is an 
isomorphism even though it is only an injective morphism, as pointed out 
in [10]. Since such revision is only a note, the above problem is not 
completely clarified and the correct number of multiplicative magic 
squares is given without a rigorous proof. In the next section, we clarify 
the above questions, proposing an original and complete proof. Moreover, 
in the last section, a novel representation for some magic squares is 
proposed, allowing an easy way to construct them. 

2. Counting Multiplicative Magic  
Squares of Order 4 

A normal multiplicative magic square nn ×  is created using n primes 
.,,1 npp …  All the divisors of nppk "1=  must appear once time in the 

matrix and in each line the product is the same. The magic constant is 2k  
and it is well-known that in a normal multiplicative magic square, in each 
line, any prime compares with power one and exactly two times. For 
example, a normal multiplicative magic square of order 4 is 
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In the following, we use nk,M  to indicate the set of normal 

multiplicative magic squares nn ×  with magic constant .2k  A hard 
problem to solve is to find the order of ,4,kM  as posed in [9]. In order to 

answer to this question, 4,kM  is made in correspondence with the set of 

normal additive magic squares 44 ×  [8]. 
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A normal additive magic square is a matrix ,nn ×  whose entries 

consist of the numbers 1,,1,0 2 −n…  and in each line, the sum of the 

numbers is the same. The magic constant is ( ) .2
12 −nn  From now on, we 

name nA  the set of normal additive magic squares .nn ×  

It is well-known that the order of 4A  is 7040, or 880 up to 

symmetries of the square [4]. Can we find a similar result for ?4,kM  

In [8], the following correspondence is defined: 

.: 22, nnkf AM →  

If f is bijective, 4,kM  is determined. The function f maps ( ) ∈= ijmM  

nk,M  into ( ) .22nijaA A∈=  The element ijm  is made in 

correspondence with ,ija  where ija  is the base 10 number , between 0 

and ,12 −n  whose base 2 expression is the n-string associated to .ijm  

This string is constructed as follows: arrange the n prime numbers in 
ascending order; if kp  is a factor of ijm  place a 1 in the k-th position of 

the string; if not, place a 0. 

Such a function f is surely injective, but unfortunately, it is not 
surjective and the order of 4,kM  is not .70404 =A  Indeed, we can 

consider the group ,4S  which permutes the four primes involved in 

.4,kM  

Theorem 1. The order of 4S  divides the order of .4,kM  

Proof. Surely, when a permutation 4S∈ρ  acts on ,4,kM M∈  then 

( )Mρ  is still an element in .4,kM  Furthermore, if ρ  is not the identity, it 

does not fix any element of ,4,kM  i.e., any orbit has 24 elements. 

Therefore by Burnside lemma, 4S  must be a divisor of .4,kM   
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As immediate consequence of the previous theorem, 7040 can not be 
the order of ,4,kM  since 24 does not divide 7040. The correct answer is 

given in the following theorem: 

Theorem 2. The order of 4,kM  is 4224. 

Proof. If we consider 4A∈A  and we write its entries in base 4, then 

in each line, the sum of the digits in the first position multiplied by 4 and 
added to the sum of the digits in the second position must yield 30. The 
only possible combinations are 

.104564624730 +×=+×=+×=  

So, if A has a line in which the digits in the second position have sum 2, 
we are in the only two situations 

,2000

1100

⋅⋅⋅⋅

⋅⋅⋅⋅
 

where · indicates the first position of the number in base 4. Considering 
the representation in base 2 of these strings, we have one of the following 
situations: 

.10000000

01010000

⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅
 

Now if we try to create ,4,kM M∈  using the inverse of f, if A has a 

line which presents one of these situations, we can not have a normal 
multiplicative magic square. In fact, if we are in the first situation, for 
example, then the prime 3p  will not appear in this line. Similarly, if a 

line of A has digits in the second position with sum 10, the possible cases 
are 

,3322

1333

⋅⋅⋅⋅

⋅⋅⋅⋅
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which correspond in base 2 to the strings 

.11111010

01111111

⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅
 

Once more, if we try, we fail to obtain .4,kM M∈  

Finally, if A has a line whose digits in the second position have sum 6, 
we have the possibilities 

.3111

2220

2211

3300

3210
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⋅⋅⋅⋅
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⋅⋅⋅⋅
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With similar arguments as the ones used before, it is easy to see that the 
last two situations do not allow to obtain a normal multiplicative magic 
square. Therefore, the squares 4A∈A  from which we obtain a normal 

multiplicative magic square are only those with lines, whose entries in 
base 4 have digits in the first and second position composed by strings 

.2211

3300

3210

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

 

In [4], all the squares in 4A  are classified. The squares in 4A  

generated using only these strings, i.e., which correspond to squares in 
,4,kM  are only those in category one ([4], p. 510). They are exactly 528 

unless of symmetries of the square. Therefore, our arguments and the 
injectivity of f allow us to conclude that the order of 4,kM  is 

.42248528 =×    
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3. A New Representation for  
Magic Squares 

In this section, we see a representation for normal additive magic 
squares, which correspond to normal multiplicative ones. 

In [5], a lower bound for the distance between the maximal and 
minimal element in a multiplicative magic square is given. In order to do 
that, the relation between additive and multiplicative magic squares is 
highlighted, recalling that a multiplicative magic square can be factorized 

as ,iA
ii p∏  where iA ’s are additive magic squares. Moreover, focusing 

on magic squares of order 4, in [5], the Hilbert basis (composed by 20 
magic squares) for such magic squares is explicited. However, such 
representation and the relation between additive and multiplicative 
magic squares are not really manageable in order to construct additive 
and multiplicative magic squares of order 4. Here, the proposed 
representation allows to determine all (and not only) the normal additive 
magic squares of order 4, which corresponds to normal multiplicative 
magic squares. In this way, they can all be easily constructed essentially 
using only 5 basic matrices. 

We consider ( ) ,4,kijmM M∈=  by means of f, we have the 

correspondent ( ) 4A∈= ijaA  and we consider its entries in base 2. Now, 

we decompose A into four matrices ,,,, 4321 AAAA  whose entries are 

only 0 or 1, so that the entries in position ij of the matrices ,,, 321 AAA  

4A  form the string .ija  

Example 1. From the normal multiplicative magic square 
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using f, we obtain the normal additive magic square 

,
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and it can be decomposed into 
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Since A is derived from a matrix in ,4,kM  by means of f, the matrices 

4321 ,,, AAAA  are all and only those having in each line exactly two 

ones. We call forms these matrices, which allow us to construct any magic 
square in 4A  corresponding to magic squares in .4,kM  These forms are 

exactly 16. 

Theorem 3. There are 16 different matrices ,44 ×  with entries 0 or 1, 
such that in each line there are exactly two ones. 

Proof. The strings that we can use to generate these forms are only 
six 

.0011,0101,0110,1001,1010,1100  
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If we choose as a diagonal a string with different extremes, then we have 
only two possible different forms. For example, 
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On the other hand, if we choose as a diagonal a string with same 
extremes, then we have four possible forms. Since, we have four strings 
with different extremes and two strings with same extremes, our forms 
are .164224 =⋅+⋅    

From these 16 forms, we can individuate five fundamental forms: 
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All the remaining can be found acting on these five forms with the group 
of symmetries of the square .8D  Combining any four forms, as we have 

done in the previous example, the resulting matrix is always an additive 
magic square, not necessarily normal, and it corresponds to a 
multiplicative one. 

Theorem 4. If 4321 ,,, AAAA  are fundamental forms, or matrices 

obtained from fundamental forms through the action of ,8D  then 

4321 248 AAAA +++  

is always an additive magic square, which corresponds to a multiplicative 
magic square. 

Given a magic square 4321 248 AAAA +++  constructed using our 

forms, we can consider all the permutations of the forms ,,, 321 AAA  

.4A  After a permutation, we have still a magic square. Thus, we can use 

the group 4S  over our forms. 

Example 2. We consider 
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Permuting the positions of the forms, we obtain 
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which is equal to 
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We have seen that using our forms we obtain always an additive 
magic square, but it is not necessarily normal. Finally, let us see how to 
utilize the forms in order to generate all and only the normal additive 
magic squares corresponding to normal multiplicative magic squares. The 
orbit of the fundamental forms with respect to the action of 8D  are 

{ },, 10 AAA =  

{ },,,, 3210 BBBBB =  

{ },,,, 3210 CCCCC =  

{ },,,, 3210 DDDDD =  

{ }., 10 EEE =  

We easily observe that 
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Furthermore, for any form in the orbits ,,, DCB  there is another form, 

in the same orbit, such that their sum is .U  

We call class the set ( ),,,, DCBA  whose elements are all the magic 

square obtained combining the forms belonging to the orbits DCBA ,,,  
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(e.g., 3210 248 DCBA +++  or 0012 248 ADCB +++  are elements of 

( )DCBA ,,, ). In the next theorem, we show all the classes, which 

provide normal additive magic squares. 

Remark 1. We obtain normal additive magic squares, which 
corresponds to all the normal multiplicative magic squares, only from the 
classes 

( )EDCA ,,,  

( )CCBB ,,,  

( )DCBB ,,,  

( )DDBB ,,,  

( )DCCB ,,,  

( )DDCB ,,,  

( ).,,, DDCC  

We have to made clear some details 

(1) When we choose a form in the orbit C, the forms available in the 
orbit D are only two and vice versa, except for the class ( ).,,, DDCC  

(2) When we have a class with two forms from the same orbits, their 
sum must not be .U  

(3) We can not take two times the same form in the same class. 

Considering this remarks, we can count the magic squares obtainable 
from these classes and we check that they are exactly 4224. 

For the class ( ),,,, EDCA  we can choose 2 forms from the orbit A,    

4 from the orbit C, only 2 from the orbit D, and 2 from E. Thus from this 
class, we can obtain 32 normal additive magic squares, unless of 
permutations. Thus, we have 7682432 =⋅  normal additive magic 
squares from ( ),,,, EDCA  and we write 
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( ) .768,,, =EDCA  

Similarly, we find 

( ) ( ) ,38462424,,, =⋅⋅⋅⋅=CCBB  

( ) ( ) ,768122424,,, =⋅⋅⋅⋅=DCBB  

( ) ( ) ,38462424,,, =⋅⋅⋅⋅=DDBB  

( ) ( ) ,768122244,,, =⋅⋅⋅⋅=DCCB  

( ) ( ) ,768122424,,, =⋅⋅⋅⋅=DDCB  

( ) ( ) ,38462424,,, =⋅⋅⋅⋅=DDCC  

and 

.4224384768768384768384768 =++++++  

Remark 2. All the magic squares that can be represented through 
our notation can be classified and identified by the membership class. 

Remark 3. Such representation allows to construct in a simple way 
all the normal multiplicative magic squares of order 4. 

We conclude this paper with a further example. 

Example 3. Let us consider the factorization 67532 ⋅⋅⋅  of 2010. We 
take a magic square in 4,2010M  

,

16732532675

6752536732

6753526723

3267567532

140230335

670152012

1005101343

66752010

























⋅⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

=

























 

its image through f is 
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.

013143

11658

71094

121215

0000110111100011

1011011001011000

0111101010010100

1100000100101111

























=

























 

This square belongs to the class ( ),,,, DDCC  in fact it can be 

decomposed as follows: 

























+

























0110

0110

1001

1001

4

0110

1001

0110

1001

8  

.

0101

1010

1010

0101

0011

1100

1100

0011

2

























+

























+  
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